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The business understanding phase of a data science project aims to understand the business 2018072120180721

problem and to then liaise with the business data technicians to identify the data available. This
is followed by the data understanding phase where we work with the business data technicians to
access and ingest the data into R. We are then in a position to initiate our journey of discovery
driven by the data. By living and breathing the data in the context of the business problem we
gain our bearings and feed our intuitions as we journey.

In this chapter we present the common series of steps for the data phase of data science. As we
progress through the chapter we build a template designed to be reused for other journeys. As we
foreshadowed in Chapter 1 rather than delving into the intricacies of the R language we immerse
ourselves into using R to achieve our outcomes, learning more about R as we proceed.

The template consists of programming code that can be reused with little or no modification on
a new dataset. The intention is that to get started with a new dataset only a few lines at the
top of the template need to be modified. No or only minimal change is then required for the
remainder of the code. In many respects the concept of a template is a stepping stone toward
writing functions in R.

Through this guide new R commands will be introduced. The reader is encouraged to review the
command’s documentation and understand what the command does. Help is obtained using the
? command as in:

?read.csv

Documentation on a particular package can be obtained using the help= option of library():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively you are encouraged to run R (e.g.,
RStudio or Emacs with ESS mode) and to replicate the commands. Check that output is the
same and that you understand how it is generated. Try some variations. Explore.
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1 Packages Used

Packages used in this chapter include dplyr (Wickham et al., 2018b), FSelector (Romanski and 2018090820180908

Kotthoff, 2018), ggplot2 (Wickham et al., 2018a), glue (Hester, 2018), lubridate (Spinu et al.,
2018), randomForest (Breiman et al., 2018), readr (Wickham et al., 2017), stringi (Gagolewski
et al., 2018), stringr (Wickham, 2018), tidyr (Wickham and Henry, 2018), magrittr (Bache and
Wickham, 2014), and rattle (Williams, 2018).

# Load required packages from local library into R session.

library(rattle) # normVarNames().
library(readr) # Efficient reading of CSV data.
library(dplyr) # Data wrangling, glimpse() and tbl_df().
library(tidyr) # Prepare a tidy dataset, gather().
library(magrittr) # Pipes %>% and %T>% and equals().
library(glue) # Format strings.
library(lubridate) # Dates and time.
library(FSelector) # Feature selection, information.gain().
library(stringi) # String concat operator %s+%.
library(stringr) # String operations.
library(randomForest) # Impute missing values with na.roughfix().
library(ggplot2) # Visualise data.
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2 Data Source

To begin the data phase of a project we will identify a data source. For our purposes we use 2018090820180908

the simplest of sources—a text-based CSV (comma separated value) file as a typical data source
format.

The weatherAUS dataset from rattle will be used. A binary formatted R dataset is provided by
the package but the CSV file for the same dataset is available at https://rattle.togaware.
com/weatherAUS.csv.

We first identify and record the location of the CSV file to analyse. R is capable of ingesting data
directly from the Internet and so we will illustrate how to do so here. The location of the file
(the so-called URL or universal resource location) will be saved as a string in a variable called
dspath—the path to the dataset. The following assignment command does this for us. Simply
type this into your R script file within RStudio. The command is then executed in RStudio by
clicking the Run button whilst the cursor is situated on the line within the script file.

# Note the source location of a dataset to ingest into R.

dspath <- "http://rattle.togaware.com/weatherAUS.csv"

The assignment operator <- will store the value on the right hand side (which is a string enclosed
within quotation marks) into the computer’s memory and we can later refer to it as the R variable
dspath—we retrieve the string simply by reference to the variable dspath.

By typing the name of the variable (dspath) in the R Console at the > prompt R will respond
with the value stored in the variable:

dspath

## [1] "http://rattle.togaware.com/weatherAUS.csv"

If not connected to the Internet we can read the data directly from a local copy of the CSV file.
The rattle package (once the package has been installed) provides a smaller sample weather.csv.
The location of the CSV file within rattle is determined using base::system.file(). Knowing
that CSV files are located within the csv sub-directory of the rattle package we generate the string
that identifies the file system path to weather.csv.

dspath <- system.file("csv", "weather.csv", package="rattle") %T>% print()

## [1] "/usr/lib/R/site-library/rattle/csv/weather.csv"

This is the path to the CSV file on my file system. Your path may well be different depending
on where your system installed the rattle package.

Note that this is a considerably smaller subset of the full weatherAUS dataset and ingesting this
rather than the full dataset will lead to different results to those presented here.

If you have separately downloaded weatherAUS.csv then you can identify its location. Here we
identify that the downloaded file is located in the current working directory.

dspath <- "./weatherAUS.csv"
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3 Data Ingestion

Having identified the source of the dataset we can ingest the dataset into the memory of the 2018072120180721

computer using the function readr::read_csv(). This function returns an enhanced data
frame. A data frame is the basic data structure used to store a dataset within R and the
enhanced data frame from the tidyverse adds functionality that improves our interactions with
the data frame.

We set up a reference to the data frame’s location in the computer’s memory by assigning the
result of the call to the function readr::read_csv() to the R variable weather.

# Ingest the dataset.

weather <- read_csv(file=dspath)

## Parsed with column specification:
## cols(
## .default = col_character(),
## Date = col_date(format = ""),
## MinTemp = col_double(),
## MaxTemp = col_double(),
## Rainfall = col_double(),
## WindGustSpeed = col_integer(),
## WindSpeed9am = col_integer(),
## WindSpeed3pm = col_integer(),
## Humidity9am = col_integer(),
## Humidity3pm = col_integer(),
## Pressure9am = col_double(),
## Pressure3pm = col_double(),
## Cloud9am = col_integer(),
## Cloud3pm = col_integer(),
## Temp9am = col_double(),
## Temp3pm = col_double(),
## RISK_MM = col_double()
## )

## See spec(...) for full column specifications.

As a side effect of calling the function readr::read_csv() helpful messages are displayed that
identify the data types for each of the variables found in the ingested dataset. We should review
these to ensure they match our expectations. If they don’t, there are optional arguments to
readr::read_csv() to inform it otherwise.

Note that the rattle also provides a smaller rattle::weather dataset as an R dataset, also named
weather. Simply by attaching the rattle package from the library a variable called weather
becomes available. Running the above command will replace the dataset provided by rattle.
Having done so we can still access the weather dataset provided by rattle using the package
prefix as in rattle::weather.
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4 Data Frame

A data frame can essentially be thought of as a rectangular table of data consisting of rows 2018072120180721

(observations) and columns (variables). We can view the structure of such a table as it
stores the weatherAUS dataset. Here we choose to display the first 10 observations of the first 6
variables.

# Display the table structure of the ingested dataset.

weather[1:10,1:6] %>% print.data.frame()

## Date Location MinTemp MaxTemp Rainfall Evaporation
## 1 2008-12-01 Albury 13.4 22.9 0.6 <NA>
## 2 2008-12-02 Albury 7.4 25.1 0.0 <NA>
## 3 2008-12-03 Albury 12.9 25.7 0.0 <NA>
## 4 2008-12-04 Albury 9.2 28.0 0.0 <NA>
## 5 2008-12-05 Albury 17.5 32.3 1.0 <NA>
## 6 2008-12-06 Albury 14.6 29.7 0.2 <NA>
## 7 2008-12-07 Albury 14.3 25.0 0.0 <NA>
## 8 2008-12-08 Albury 7.7 26.7 0.0 <NA>
## 9 2008-12-09 Albury 9.7 31.9 0.0 <NA>
## 10 2008-12-10 Albury 13.1 30.1 1.4 <NA>

By choosing to pipe the data through base::print.data.frame() we request a raw display of
the actual data frame.

Next we select 10 random observations, using dplyr::sample_n(), of 5 random variables, orches-
trated using dplyr::select() of a dplyr::sample(), with the support of base::ncol().

# Display a random selection of observations and variables.

weather %>%
sample_n(10) %>%
select(sample(1:ncol(weather), 5)) %>%
print.data.frame()

## WindDir3pm Pressure3pm Temp3pm Evaporation WindDir9am
## 1 NW 1007.3 22.0 <NA> NNW
## 2 ESE 1023.6 16.6 6 SE
## 3 ENE 1011.0 28.8 <NA> N
## 4 N 1018.0 23.3 4.8 ENE
## 5 NE 1005.6 30.1 6.2 SE
## 6 NNE NA 16.1 1.2 N
## 7 W 1019.4 15.6 3.2 WNW
## 8 NNE 1028.3 22.9 <NA> NE
## 9 ENE 1014.7 27.3 8.2 SSE
## 10 N 1020.8 10.7 <NA> NNE

Observe that this is a tabular form (i.e., it has rows and columns) and that we will generally be
working with datasets in such a tabular form.
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5 The Shape of the Dataset

Once the dataset is loaded we want to get a basic idea of what it looks like—its shape. Being 2018072120180721

an extended data frame (what we call a tibble), we can display the data as a tibble simply by
printing the data referred to by the variable name.

# Print the dataset in a human useful way.

weather

## # A tibble: 145,463 x 24
## Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine
## <date> <chr> <dbl> <dbl> <dbl> <chr> <chr>
## 1 2008-12-01 Albury 13.4 22.9 0.6 <NA> <NA>
## 2 2008-12-02 Albury 7.4 25.1 0 <NA> <NA>
## 3 2008-12-03 Albury 12.9 25.7 0 <NA> <NA>
## 4 2008-12-04 Albury 9.2 28 0 <NA> <NA>
## 5 2008-12-05 Albury 17.5 32.3 1 <NA> <NA>
## 6 2008-12-06 Albury 14.6 29.7 0.2 <NA> <NA>
## 7 2008-12-07 Albury 14.3 25 0 <NA> <NA>
## 8 2008-12-08 Albury 7.7 26.7 0 <NA> <NA>
## 9 2008-12-09 Albury 9.7 31.9 0 <NA> <NA>
## 10 2008-12-10 Albury 13.1 30.1 1.4 <NA> <NA>
## # ... with 145,453 more rows, and 17 more variables: WindGustDir <chr>,
## # WindGustSpeed <int>, WindDir9am <chr>, WindDir3pm <chr>,
## # WindSpeed9am <int>, WindSpeed3pm <int>, Humidity9am <int>,
## # Humidity3pm <int>, Pressure9am <dbl>, Pressure3pm <dbl>, Cloud9am <int>,
## # Cloud3pm <int>, Temp9am <dbl>, Temp3pm <dbl>, RainToday <chr>,
## # RISK_MM <dbl>, RainTomorrow <chr>

We observe that dataset consists of 145,463 observations of 24 variables. The enhanced nature
of the data frame that representing it as a tibble brings to us is that the printout is more
informative. The first few observations are shown with a subset of the variables followed by a
list of all of the other variables.
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6 A Glimpse of the Dataset

A useful alternative to gain some insight into the dataset is through tibble::glimpse(). 2018072120180721

# A quick view of the contents of the dataset.

glimpse(weather)

## Observations: 145,463
## Variables: 24
## $ Date <date> 2008-12-01, 2008-12-02, 2008-12-03, 2008-12-04, 200...
## $ Location <chr> "Albury", "Albury", "Albury", "Albury", "Albury", "A...
## $ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7.7, 9.7, 13...
## $ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0, 26.7, 31.9...
## $ Rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0....
## $ Evaporation <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ Sunshine <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ WindGustDir <chr> "W", "WNW", "WSW", "NE", "W", "WNW", "W", "W", "NNW"...
## $ WindGustSpeed <int> 44, 44, 46, 24, 41, 56, 50, 35, 80, 28, 30, 31, 61, ...
## $ WindDir9am <chr> "W", "NNW", "W", "SE", "ENE", "W", "SW", "SSE", "SE"...
## $ WindDir3pm <chr> "WNW", "WSW", "WSW", "E", "NW", "W", "W", "W", "NW",...
## $ WindSpeed9am <int> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15, 17, 15, 28, 24, ...
## $ WindSpeed3pm <int> 24, 22, 26, 9, 20, 24, 24, 17, 28, 11, 6, 13, 28, 20...
## $ Humidity9am <int> 71, 44, 38, 45, 82, 55, 49, 48, 42, 58, 48, 89, 76, ...
## $ Humidity3pm <int> 22, 25, 30, 16, 33, 23, 19, 19, 9, 27, 22, 91, 93, 4...
## $ Pressure9am <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 1010.8, 1009.2, 1009...
## $ Pressure3pm <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 1006.0, 1005.4, 1008...
## $ Cloud9am <int> 8, NA, NA, NA, 7, NA, 1, NA, NA, NA, NA, 8, 8, NA, N...
## $ Cloud3pm <int> NA, NA, 2, NA, 8, NA, NA, NA, NA, NA, NA, 8, 8, 7, N...
## $ Temp9am <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6, 18.1, 16.3, 18.3...
## $ Temp3pm <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9, 24.6, 25.5, 30.2...
## $ RainToday <chr> "No", "No", "No", "No", "No", "No", "No", "No", "No"...
## $ RISK_MM <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0, 2....
## $ RainTomorrow <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Yes...

Again we receive a printed summary of the dataset, reporting on the number of observations and
variables, but now the table is effectively rotated so that all variables can be listed along with
their data type and a selection of their values for the first few observations.
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7 Introducing Template Variables

A reference to the original dataset can be created using a template (or generic) variable. The 2018072120180721

new variable will be called ds (short for dataset).

# Take a copy of the dataset into a generic variable.

ds <- weather

Both ds and weather will now reference the same dataset within the computer’s memory. As
we modify ds those modifications will only affect the data referenced by ds. Effectively, an extra
copy of the dataset in the computer’s memory will start to grow as we change the data from its
original form. R avoids making copies of datasets unnecessarily and so a simple assignment does
not create a new copy. As modifications are made to one or the other copy of a dataset then
extra memory will be used to store the columns that differ between the datasets.

From here on we no longer refer to the dataset as weather but as ds. This allows the following
analyses and processing to be rather generic—turning the R code into a template and so requiring
only minor modification when used with a different dataset assigned into ds.

Often we will find that we can simply load a different dataset into memory, store it as ds and
the remaining steps of our analyses and processing will essentially work unchanged.

The first few steps of our template are then captured as creating the reference to the dataset
and presenting our initial view of the dataset.

# Prepare for a templated analysis and processing.

dsname <- "weather"
ds <- get(dsname)
glimpse(ds)

## Observations: 145,463
## Variables: 24
## $ Date <date> 2008-12-01, 2008-12-02, 2008-12-03, 2008-12-04, 200...
## $ Location <chr> "Albury", "Albury", "Albury", "Albury", "Albury", "A...
## $ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7.7, 9.7, 13...
## $ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0, 26.7, 31.9...
....

We are a little tricky here in recording the dataset name in the variable dsname and then using
the function base::get() to make a copy of the dataset reference and link it to the generic
variable ds. We could simply assign the data to ds directly as we saw above. Either way the
generic variable ds refers to the same dataset. The use of base::get() allows us to be a little
more generic in our template.

The use of generic variables within a template for the tasks we perform on each new dataset will
have obvious advantages but we need to be careful. A disadvantage is that we may be working
with several datasets and accidentally overwrite previously processed datasets referenced using
the same generic variable (ds). The processing of the dataset might take some time and so
accidentally losing it is not an attractive proposition. Care needs to be taken to avoid this.
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8 Locating Datasets in Memory

We can see that ds and weather reference the same dataset in memory using dplyr::location() 2018072120180721

and dplyr::changes().

location(weather)

## <0x5622da6a4140>
## Variables:
## * Date: <0x5622e05a0da0>
## * Location: <0x5622e06bcf90>
## * MinTemp: <0x5622e07d9180>
## * MaxTemp: <0x5622e08f5370>
....

location(ds)

## <0x5622da6a4140>
## Variables:
## * Date: <0x5622e05a0da0>
## * Location: <0x5622e06bcf90>
## * MinTemp: <0x5622e07d9180>
## * MaxTemp: <0x5622e08f5370>
....

changes(weather, ds)

## <identical>

This gets rather technical (or geeky), but the strings of digits and characters within the angle
brackets are actual memory addresses—that is, they are pointers to a direct location in our
computer’s memory. The 0x at the beginning of each identifies that a hexadecimal scheme is
used, thus we see digits 0 to 9 and then the letters a, b, c, d, e, and f being used. That is, 16
digits.

The thing to note is that the addresses recorded for weather and ds, including the addresses
where we find the actual variables (columns) within each dataset, are identical. This is confirmed
by the call to dplyr::changes().
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9 Changing Datasets in Memory

Let’s make a change to the weather dataset by simply changing a single cell, changing the value 2018072120180721

of MinTemp (the third variable) for the first observation to 5.

weather[1,3] <- 5

Notice the divergence of the two datasets. They still share a lot in common, and hence only one
copy of that data, but where they diverge, they now use different memory locations.

location(weather)

## <0x5622dc266410>
## Variables:
## * Date: <0x5622e05a0da0>
## * Location: <0x5622e06bcf90>
## * MinTemp: <0x5622e54a1d00>
## * MaxTemp: <0x5622e08f5370>
....

location(ds)

## <0x5622da6a4140>
## Variables:
## * Date: <0x5622e05a0da0>
## * Location: <0x5622e06bcf90>
## * MinTemp: <0x5622e07d9180>
## * MaxTemp: <0x5622e08f5370>
....

Using dplyr::changes() makes clear the changes.

changes(weather, ds)

## Changed variables:
## old new
## MinTemp 0x5622e54a1d00 0x5622e07d9180
##
## Changed attributes:
## old new
## row.names 0x5622e3ceb800 0x5622e3cf0760

That’s an interesting aside, but we now get back to our actual data analysis and processing.
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10 Reviewing Variable Names

The names of the variables within the dataset as supplied to us may not be in any particular
form and may use different conventions. For example, they may use a mix of upper and lower
case letters (TempToday9AM) or be very long (Temperature_Recorded_Today_9am) or use sequen-
tial numbers to identify each variable (V004 or V004_rainToday) or use codes (XVn34_rain) or
any number of other conventions. Often we prefer to simplify the variable names to ease our
processing and thinking and to enforce a standard and consistent naming convention for our-
selves.

We use base::names() to list the names of the variables within a dataset.

# Review the variables to consider normalising their names.

names(ds)

## [1] "Date" "Location" "MinTemp" "MaxTemp"
## [5] "Rainfall" "Evaporation" "Sunshine" "WindGustDir"
## [9] "WindGustSpeed" "WindDir9am" "WindDir3pm" "WindSpeed9am"
## [13] "WindSpeed3pm" "Humidity9am" "Humidity3pm" "Pressure9am"
## [17] "Pressure3pm" "Cloud9am" "Cloud3pm" "Temp9am"
## [21] "Temp3pm" "RainToday" "RISK_MM" "RainTomorrow"
....

Notice that the names here use a scheme whereby the initial letter is capitalised and each word
within the variable name is also capitalised. That’s a reasonable naming scheme and is preferred
by some.

Module: DataO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 10 of 50

Generated 8th September 2018 9:12pm



One Page R Data Science Data Wrangling

11 Normalizing Variable Names

A convenient convention that I personally prefer is to map all variable names to lowercase. R 2018072120180721

is case sensitive so that doing this will result in different variable names as far as R is con-
cerned. Such (so called) normalisation is useful when different upper/lower case conventions are
intermixed inconsistently in names like Incm_tax_PyBl. Remembering how to capitalize when
interactively exploring the data with thousands of such variables can be quite a cognitive load
for us. Yet we often see such variable names arising in practise especially when we import data
from databases which are often case insensitive.

We can use rattle::normVarNames() to make a reasonable attempt of converting variables from
a dataset into a preferred standard form. The actual form follows a style that is presented in
Appendix 6. The example below shows the transformation into a normalised form. We make
extensive use of the function base::names() to work with the variable names.

# Normalise the variable names.

names(ds) %<>% normVarNames() %T>% print()

## [1] "date" "location" "min_temp" "max_temp"
## [5] "rainfall" "evaporation" "sunshine" "wind_gust_dir"
## [9] "wind_gust_speed" "wind_dir_9am" "wind_dir_3pm" "wind_speed_9am"
## [13] "wind_speed_3pm" "humidity_9am" "humidity_3pm" "pressure_9am"
## [17] "pressure_3pm" "cloud_9am" "cloud_3pm" "temp_9am"
## [21] "temp_3pm" "rain_today" "risk_mm" "rain_tomorrow"
....

Notice the use of the assignment pipe here as introduced in Chapter 1. We will recall that the
magrittr::%<>% operator pipes the left-hand data to the function on the right-hand side and
then returns the result to the left-hand side overwriting the original contents of the memory
referred to on the left-hand side.
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12 Effect on Data Storage

When the names of the variables within a dataset are changed R does not make a complete new 2018072120180721

copy of the dataset. Instead, the actual data in the column remains in tack whilst the variable
itself (ds) references a new memory location where the new variable names get noted. The
underlying data within the table is unaffected.

location(weather)

## <0x5622dc266410>
## Variables:
## * Date: <0x5622e05a0da0>
## * Location: <0x5622e06bcf90>
## * MinTemp: <0x5622e54a1d00>
## * MaxTemp: <0x5622e08f5370>
....

location(ds)

## <0x5622e581e0c0>
## Variables:
## * date: <0x5622e05a0da0>
## * location: <0x5622e06bcf90>
## * min_temp: <0x5622e07d9180>
## * max_temp: <0x5622e08f5370>
....
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13 Special Case Variable Name Transformations

When reviewing the variables of a dataset we often notice other changes that could be made to the 2018072120180721

variable names. This might be to simplify the variables or to clarify the meaning of the variable.
The string processing functions provided by stringr come in handy for such processing.

In the following example we remove the prefix of the variable names where we identify that the
prefix consists of all characters up to the first underscore. This is useful where a dataset has
prefixed each variable by a sequential number or by some other code and we have no real use of
such a prefix in our processing.

names(ds) %<>% str_replace("^[^_]*_", "")

This will take a variable name like ab123_tax_payable and convert it to tax_payable.

str_replace("ab123_tax_payable", "^[^_]*_", "")

## [1] "tax_payable"

The odd looking characters in the argument to stringr::str_replace() are a regular expres-
sion. Regular expressions are a very powerful concept and can get quite complex. The reader is
referred to the many resources on-line that cover regular expressions. The regular expression is a
pattern used to match some part of the variable name. The pattern begins with ^ which anchors
the match to the beginning of the variable name. This can be followed by zero or more characters
(*) that do not match the underscore ([^_])—the * specifies that the preceding pattern can be
repeated zero or more times. The preceding pattern here is actually a list of characters included
between square brackets. Since this list begins with ^ the listed characters are excluded from the
matching. That is, the pattern preceding the * will match any character that is not an under-
score. The third component of the match is then an actual underscore. Combined this regular
expression matches any sequence (including an empty sequence) of characters (except for an
underscore) that is at the beginning of the variable name and followed by an underscore.

The next argument to stringr::str_replace() is the replacement string. In this case we are
replacing the matched pattern with an empty string.

The example here is simply one example of very many possible transformations we become used
to in cleaning our datasets. The aim in transforming the variable names is to make then easier
to use and to understand, both for ourselves and for others.
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14 Data Review

Having ingested the dataset and an initial review, normalising the variable names, we are now 2018072120180721

ready to explore more. In particular, what do the data within the dataset look like. We again
gain tibble::glimpse() into the dataset:

# Review the dataset.

glimpse(ds)

## Observations: 145,463
## Variables: 24
## $ date <date> 2008-12-01, 2008-12-02, 2008-12-03, 2008-12-04, 2...
## $ location <chr> "Albury", "Albury", "Albury", "Albury", "Albury", ...
## $ min_temp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7.7, 9.7, ...
## $ max_temp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0, 26.7, 31...
## $ rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, ...
## $ evaporation <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ sunshine <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ wind_gust_dir <chr> "W", "WNW", "WSW", "NE", "W", "WNW", "W", "W", "NN...
## $ wind_gust_speed <int> 44, 44, 46, 24, 41, 56, 50, 35, 80, 28, 30, 31, 61...
## $ wind_dir_9am <chr> "W", "NNW", "W", "SE", "ENE", "W", "SW", "SSE", "S...
## $ wind_dir_3pm <chr> "WNW", "WSW", "WSW", "E", "NW", "W", "W", "W", "NW...
## $ wind_speed_9am <int> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15, 17, 15, 28, 24...
## $ wind_speed_3pm <int> 24, 22, 26, 9, 20, 24, 24, 17, 28, 11, 6, 13, 28, ...
## $ humidity_9am <int> 71, 44, 38, 45, 82, 55, 49, 48, 42, 58, 48, 89, 76...
## $ humidity_3pm <int> 22, 25, 30, 16, 33, 23, 19, 19, 9, 27, 22, 91, 93,...
## $ pressure_9am <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 1010.8, 1009.2, 10...
## $ pressure_3pm <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 1006.0, 1005.4, 10...
## $ cloud_9am <int> 8, NA, NA, NA, 7, NA, 1, NA, NA, NA, NA, 8, 8, NA,...
## $ cloud_3pm <int> NA, NA, 2, NA, 8, NA, NA, NA, NA, NA, NA, 8, 8, 7,...
## $ temp_9am <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6, 18.1, 16.3, 18...
## $ temp_3pm <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9, 24.6, 25.5, 30...
## $ rain_today <chr> "No", "No", "No", "No", "No", "No", "No", "No", "N...
## $ risk_mm <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0.0, 1.4, 0.0, ...
## $ rain_tomorrow <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Y...

Observe the variety of data types here, ranging from Date (date), through character (chr)
and numeric (dbl).

The data mostly looks as expected though it is odd that evaporation and sunshine are iden-
tified as character. Probably because they seem to be all missing, at least in the first 10 or so
observations. We begin question other aspects of the data too. For example, is date an ongoing
sequence of days as it appears to be here? Does location have values other than Albury? What
is the distribution of the different variables?

These are all questions we will start asking ourselves in the context of “living and breathing”
our data. Our aim should be to gleam all we can about the data that we are dealing with.
Data science is very much about understanding, not blindly processing. The excitement is in the
discovery of patterns in the data and the narrative the data is seeking to tell.
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15 Dataset Head and Tail

Datasets can be very large, with many observations (millions) and many variables (thousands). 2018072120180721

We can’t be expected to browse through all of the observations and variables. Instead we might
review the contents of the dataset using utils::head() and utils::tail() to consider the top
six (by default) and the bottom six observations.

# Review the first few observations.

head(ds) %>% print.data.frame()

## date location min_temp max_temp rainfall evaporation sunshine
## 1 2008-12-01 Albury 13.4 22.9 0.6 <NA> <NA>
## 2 2008-12-02 Albury 7.4 25.1 0.0 <NA> <NA>
## 3 2008-12-03 Albury 12.9 25.7 0.0 <NA> <NA>
## 4 2008-12-04 Albury 9.2 28.0 0.0 <NA> <NA>
## 5 2008-12-05 Albury 17.5 32.3 1.0 <NA> <NA>
## 6 2008-12-06 Albury 14.6 29.7 0.2 <NA> <NA>
## wind_gust_dir wind_gust_speed wind_dir_9am wind_dir_3pm wind_speed_9am
## 1 W 44 W WNW 20
## 2 WNW 44 NNW WSW 4
## 3 WSW 46 W WSW 19
....

# Review the last few observations.

tail(ds) %>% print.data.frame()

## date location min_temp max_temp rainfall evaporation sunshine
## 1 2018-07-25 Uluru 7.5 26.9 0 <NA> <NA>
## 2 2018-07-26 Uluru 5.3 29.7 0 <NA> <NA>
## 3 2018-07-27 Uluru 3.7 21.5 0 <NA> <NA>
## 4 2018-07-28 Uluru 3.2 21.6 0 <NA> <NA>
## 5 2018-07-29 Uluru 3.7 21.8 0 <NA> <NA>
## 6 2018-07-30 Uluru 2.3 25.6 0 <NA> <NA>
## wind_gust_dir wind_gust_speed wind_dir_9am wind_dir_3pm wind_speed_9am
## 1 N 35 ESE WNW 7
## 2 NW 67 E NW 7
## 3 SSW 30 WSW WSW 6
....

All the time we are building a picture of the data we are looking at. It is beginning to confirm that
location has multiple values whilst date does appear to be a sequence for each location.
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16 Random Observations

It is also useful to review some random observations from the dataset to provide a little more 2018072120180721

insight. Here we use dplyr::sample_n() to randomly select six rows from the dataset.

# Review a random sample of observations.

sample_n(ds, size=6) %>% print.data.frame()

## date location min_temp max_temp rainfall evaporation sunshine
## 1 2010-09-29 AliceSprings 11.7 23.0 0.0 8 11.6
## 2 2018-07-20 Darwin 22.9 33.8 0.0 4.2 8.8
## 3 2014-08-29 Newcastle 9.9 18.0 2.4 <NA> <NA>
## 4 2013-11-11 Melbourne 9.8 19.4 8.0 5.8 5.3
## 5 2010-04-25 Dartmoor 9.1 17.0 4.2 1.8 9.3
## 6 2013-04-18 Hobart 9.2 13.2 0.8 3 4.5
## wind_gust_dir wind_gust_speed wind_dir_9am wind_dir_3pm wind_speed_9am
## 1 SE 48 SE <NA> 22
## 2 SE 39 ENE E 9
## 3 <NA> NA SE SE 4
....
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17 Characters

On ingesting the dataset into R we observe the variables identified (automatically) as having 2018072320180723

character base::class(). The expected values for such variables are strings of characters. We
often call such variables categoric variables. Within R these are usually represented as a data
type called factor and handled specially by many of the modelling algorithms.

We can observe some meta data for each of the character variables. Let’s first identify the
character variables.

# Identify the character variables by index.

ds %>%
sapply(is.character) %>%
which() %T>%
print() ->

chari

## location evaporation sunshine wind_gust_dir wind_dir_9am
## 2 6 7 8 10
## wind_dir_3pm rain_today rain_tomorrow
## 11 22 24

# Identify the chracter variables by name.

ds %>%
names() %>%
'['(chari) %T>%
print() ->

charc

## [1] "location" "evaporation" "sunshine" "wind_gust_dir"
## [5] "wind_dir_9am" "wind_dir_3pm" "rain_today" "rain_tomorrow"

We will review each one of these in more detail so as to understand how we make use of them in
our analyses. In particular we consider which of the variables might be handled as factors.

Where a character variable takes on a limited number of possible values we might convert the
variable from character into factor (categoric) so as to take advantage of special handling of
factors in R.

In fact, we think of a factor as a variable that can only take on a specific number of known
distinct values which we call the levels of the factor.
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18 Factors

For datasets that we load into R we will not always have examples of all possible levels of a 2018090820180908

factor. Consequently it is not always possible to automatically list all of the levels automatically.
Be default the tidyverse ingests these variables as character so that we can take specific action
to convert them to factor as required.

We first review the number of unique levels for each of the factors.

# Observe the unique levels.

ds[charc] %>% sapply(unique)

## $location
## [1] "Albury" "BadgerysCreek" "Cobar"
## [4] "CoffsHarbour" "Moree" "Newcastle"
## [7] "NorahHead" "NorfolkIsland" "Penrith"
## [10] "Richmond" "Sydney" "SydneyAirport"
## [13] "WaggaWagga" "Williamtown" "Wollongong"
## [16] "Canberra" "Tuggeranong" "MountGinini"
## [19] "Ballarat" "Bendigo" "Sale"
## [22] "MelbourneAirport" "Melbourne" "Mildura"
## [25] "Nhil" "Portland" "Watsonia"
## [28] "Dartmoor" "Brisbane" "Cairns"
## [31] "GoldCoast" "Townsville" "Adelaide"
## [34] "MountGambier" "Nuriootpa" "Woomera"
## [37] "Albany" "Witchcliffe" "PearceRAAF"
## [40] "PerthAirport" "Perth" "SalmonGums"
## [43] "Walpole" "Hobart" "Launceston"
## [46] "AliceSprings" "Darwin" "Katherine"
## [49] "Uluru"
##
## $evaporation
## [1] NA "12" "14.8" "12.6" "10.8" "11.4" "11.2" "13" "9.8" "14.6"
## [11] "11" "12.8" "13.8" "16.4" "17.4" "16" "13.6" "8" "8.2" "8.6"
## [21] "14.2" "15.8" "16.2" "13.4" "14.4" "11.8" "15.6" "15.2" "11.6" "9.6"
## [31] "6.6" "0.6" "6" "3" "2" "5.2" "9" "10.2" "10" "7.4"
## [41] "8.4" "9.2" "9.4" "12.4" "10.4" "7.2" "6.8" "7.6" "4.4" "6.4"
....

If we decide to convert all of these variables from character into factor, then we can do so using
base::factor().

# Convert all chracter variables to be factors.

ds[charc] %<>% map(factor)

We don’t actually do so here as we will consider each character variable in turn to decide how
to handle it, especially that we might observe that evaporation and sunshine appear to be
numeric.
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19 Location

From our review of the data so far we start to make some observations about the character 2018072320180723

variables. The first is location. We note that several locations were reported in the above
exploration of the dataset. We can confirm the number of locations by counting the number of
data.table::unique() values the variable has in the original dataset.

# How many locations are represented in the dataset.

ds$location %>%
unique() %>%
length()

## [1] 49

We may not know in general what other locations we will come across in related datasets and we
already have quite a collection of 49 locations. We will retain this variable as a character data
type.

Here is a list of locations and their frequencies in the dataset.

ds$location %>%
table()

## .
## Adelaide Albany Albury AliceSprings
## 3193 3040 3041 3041
## BadgerysCreek Ballarat Bendigo Brisbane
## 3010 3041 3041 3194
## Cairns Canberra Cobar CoffsHarbour
## 3041 3437 3010 3010
## Dartmoor Darwin GoldCoast Hobart
## 3010 3194 3041 3194
## Katherine Launceston Melbourne MelbourneAirport
## 1579 3041 3194 3010
## Mildura Moree MountGambier MountGinini
## 3010 3010 3041 3041
## Newcastle Nhil NorahHead NorfolkIsland
## 3041 1579 3005 3010
## Nuriootpa PearceRAAF Penrith Perth
## 3009 3009 3040 3193
## PerthAirport Portland Richmond Sale
## 3009 3010 3010 3010
## SalmonGums Sydney SydneyAirport Townsville
## 2963 3345 3010 3041
## Tuggeranong Uluru WaggaWagga Walpole
## 3040 1579 3010 3006
## Watsonia Williamtown Witchcliffe Wollongong
....
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20 Evaporation and Sunshine

The next two character variables are: evaporation, sunshine. It does seem odd that these 2018072320180723

would be character, expecting bpth to be numeric values. If we look at the top of the dataset
we see they have missing values.

# Note the character remaining variables to be dealt with.

head(ds$evaporation)

## [1] NA NA NA NA NA NA

head(ds$sunshine)

## [1] NA NA NA NA NA NA

# Review other random values.

sample(ds$evaporation, 8)

## [1] NA NA "5.4" NA NA NA "1.4" "6.8"

sample(ds$sunshine, 8)

## [1] "8.3" NA "10.3" NA "10.5" NA "1.2" NA

The heuristic used to determine the data type when ingesting data only looks at a subset of all
the data before it determines the data type. In this case the early observations are all missing
and so default to character which is general enough to capture all potential values. We need to
convert the variables to numeric.

# Identify the vairables to process.

cvars <- c("evaporation", "sunshine")

# Check the current class of the variables.

ds[cvars] %>% sapply(class)

## evaporation sunshine
## "character" "character"

# Convert to numeric.

ds[cvars] %<>% sapply(as.numeric)

# Review some random values.

sample(ds$evaporation, 10)

## [1] 4.6 1.6 7.8 NA NA NA 5.6 4.8 3.0 NA

sample(ds$sunshine, 10)

## [1] NA 10.7 NA NA NA NA NA NA 2.5 NA
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21 Wind Directions

The three wind direction variables (wind_gust_dir, wind_dir_9am, wind_dir_3pm) are also 2018072320180723

identified as character. We review the distribution of values here with dplyr::select() identi-
fying any variable that tidyselect::contains() the string _dir and then build a base::table()
over those variables.

# Review the distribution of observations across levels.

ds %>%
select(contains("_dir")) %>%
sapply(table)

## wind_gust_dir wind_dir_9am wind_dir_3pm
## E 9179 9245 8461
## ENE 8164 7936 7849
## ESE 7483 7724 8539
## N 9310 11570 8798
## NE 7055 7670 8256
## NNE 6434 7995 6531
## NNW 6511 7787 7741
## NW 8028 8715 8609
## S 9209 8675 9889
## SE 9424 9305 10948
## SSE 9159 9085 9351
## SSW 8760 7533 8219
## SW 8934 8443 9256
## W 9778 8418 10065
## WNW 8265 7436 8867
## WSW 9040 6897 9508

Observe all 16 compass directions are represented and it would make sense to convert this into
a factor. Notice that the directions are in alphabetic order and conversion to factor will retain
that. Instead we can construct an ordered factor to capture the compass order (from N, NNE, to
NW and NNW). We note the ordering of the directions here.

# Levels of wind direction are ordered compas directions.

compass <- c("N", "NNE", "NE", "ENE",
"E", "ESE", "SE", "SSE",
"S", "SSW", "SW", "WSW",
"W", "WNW", "NW", "NNW")
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22 Ordered Factor

Given our knowledge that compass directions have an obvious order, we convert the direction 2018072320180723

variables into an ordered factor. We do so using ordered=TRUE with base::factor().

# Note the names of the wind direction variables.

ds %>%
select(contains("_dir")) %>%
names() %T>%
print() ->

vnames

## [1] "wind_gust_dir" "wind_dir_9am" "wind_dir_3pm"

# Convert these variables from character to factor.

ds[vnames] %<>%
lapply(factor, levels=compass, ordered=TRUE) %>%
data.frame() %>%
tbl_df()

# Confirm they are now factors.

ds[vnames] %>% sapply(class)

## wind_gust_dir wind_dir_9am wind_dir_3pm
## [1,] "ordered" "ordered" "ordered"
## [2,] "factor" "factor" "factor"

We can again obtain a distribution of the variables to confirm that all we have changed is the
data type.

# Verify the distribution has not changed.

ds %>%
select(contains("_dir")) %>%
sapply(table)

## wind_gust_dir wind_dir_9am wind_dir_3pm
## N 9310 11570 8798
## NNE 6434 7995 6531
## NE 7055 7670 8256
## ENE 8164 7936 7849
## E 9179 9245 8461
## ESE 7483 7724 8539
## SE 9424 9305 10948
## SSE 9159 9085 9351
## S 9209 8675 9889
## SSW 8760 7533 8219
## SW 8934 8443 9256
....
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23 Rain

The two remaining character variables are: rain_today, rain_tomorrow. Their distributions 2018072320180723

are generated by dplyr::select()ing from the dataset those variables that start with rain_ and
then build a base::table() over those variables. We use base::sapply() to apply base::table()
to the selected columns to count the frequency of the occurrence of each value of a variable within
the dataset.

# Review the distribution of observations across levels.

ds %>%
select(starts_with("rain_")) %>%
sapply(table)

## rain_today rain_tomorrow
## No 110981 110985
## Yes 31253 31250

Noting that No and Yes are the only values these two variables will take it makes sense to
convert them both to factors. We will keep the ordering as alphabetic and so a simple call to
base::factor() will to convert from character to factor.

# Note the names of the rain variables.

ds %>%
select(starts_with("rain_")) %>%
names() ->

vnames

# Confirm these are currently character variables.

ds[vnames] %>% sapply(class)

## rain_today rain_tomorrow
## "character" "character"

# Convert these variables from character to factor.

ds[vnames] %<>%
lapply(factor) %>%
data.frame() %>%
tbl_df()

# Confirm they are now factors.

ds[vnames] %>% sapply(class)

## rain_today rain_tomorrow
## "factor" "factor"
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24 Numeric

Summaries of numeric data are provided using base::summary(). In the following we identify 2018072320180723

the numeric variables and summarise each. In doing so, as a data scientist, we want to again
observe any oddities and to explain them.

ds %>%
sapply(is.numeric) %>%
which() %>%
names %T>%
print() ->

numi

## [1] "min_temp" "max_temp" "rainfall" "evaporation"
## [5] "sunshine" "wind_gust_speed" "wind_speed_9am" "wind_speed_3pm"
## [9] "humidity_9am" "humidity_3pm" "pressure_9am" "pressure_3pm"
## [13] "cloud_9am" "cloud_3pm" "temp_9am" "temp_3pm"
## [17] "risk_mm"

ds[numi] %>%
summary()

## min_temp max_temp rainfall evaporation
## Min. :-8.70 Min. :-4.10 Min. : 0.000 Min. : 0.00
## 1st Qu.: 7.40 1st Qu.:17.90 1st Qu.: 0.000 1st Qu.: 2.60
## Median :11.90 Median :22.50 Median : 0.000 Median : 4.60
## Mean :12.04 Mean :23.14 Mean : 2.298 Mean : 5.42
## 3rd Qu.:16.70 3rd Qu.:28.20 3rd Qu.: 0.600 3rd Qu.: 7.20
## Max. :33.90 Max. :48.10 Max. :371.000 Max. :82.40
## NA's :1545 NA's :1335 NA's :3229 NA's :64843
## sunshine wind_gust_speed wind_speed_9am wind_speed_3pm
## Min. : 0.00 Min. : 2.00 Min. : 0.00 Min. : 0.00
## 1st Qu.: 4.90 1st Qu.: 31.00 1st Qu.: 7.00 1st Qu.:13.00
## Median : 8.40 Median : 39.00 Median :13.00 Median :19.00
## Mean : 7.61 Mean : 40.01 Mean :14.01 Mean :18.64
## 3rd Qu.:10.60 3rd Qu.: 48.00 3rd Qu.:19.00 3rd Qu.:24.00
## Max. :14.50 Max. :135.00 Max. :87.00 Max. :87.00
## NA's :70820 NA's :10667 NA's :2081 NA's :3407
....

Reviewing this information we can make some obvious observations. Temperatures, for example,
appears to be in degrees Celsius rather than Fahrenheit. Rainfall looks like millimetres. There
are some quite skewed distributions with min and median small but large max values. As data
scientists we will further explore the distributions as in Chapter 5.
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25 Logical

Above we converted rain_today and rain_tomorrow to factors. They have just two values as 2018072320180723

we confirm here, in addition to a small number of missing values (NA).

ds %>%
select(rain_today, rain_tomorrow) %>%
summary()

## rain_today rain_tomorrow
## No :110981 No :110985
## Yes : 31253 Yes : 31250
## NA's: 3229 NA's: 3228

As binary valued factors, and particularly as the values suggest, they are both candidates
for being considered as logical variables (sometimes called Boolean). They can be treated as
FALSE/TRUE instead of No/Yes and so supported directly by R as class logical. Different
functions will then treat them as appropriate but not all functions do anything special. If this
suits our purposes then the following can be used to perform the conversion to logical.

ds %<>%
mutate(rain_today = rain_today == "Yes",

rain_tomorrow = rain_tomorrow == "Yes")

Best to now check that the distribution itself has not changed.

ds %>%
select(rain_today, rain_tomorrow) %>%
summary()

## rain_today rain_tomorrow
## Mode :logical Mode :logical
## FALSE:110319 FALSE:110316
## TRUE :31880 TRUE :31877
## NA's :3261 NA's :3267

Observe that the TRUE (Yes) values are much less frequent than the FALSE (No) values, and
we also note the missing values.

The majority of days not having rain can be cross checked with the rainfall variable. In the
previous summary of its distribution we note that rainfall has a median of zero, consistent with
fewer days of actual rain. As data scientists we perform various cross checks on the hunt for
oddities in the data.

As data scientists we will also want to understand why there are missing values. Is it simply
some rare failures to capture the observation, or for example is there a particular location not
recording rainfall? We would explore that now before moving on.

For our purposes going forward we will retain these two variables as factors. One reason for doing
so is that we will illustrate missing value imputation using randomForest::na.roughfix() and
this functoin does not handle logical data but keeping rain_tomorrow as character will allow
missing value imputation. Of course we could skip this variable for the imputation.
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26 Variable Roles

Now that we have a basic idea of the size and shape and contents of the dataset and have 2018072320180723

performed some basic data type identification and conversion we are in a position to identify the
roles played by the variables within the dataset. First we will record the list of available variables
so that we might reference them below.

# Note the available variables.

vars <- names(ds) %T>% print()

## [1] "date" "location" "min_temp" "max_temp"
## [5] "rainfall" "evaporation" "sunshine" "wind_gust_dir"
## [9] "wind_gust_speed" "wind_dir_9am" "wind_dir_3pm" "wind_speed_9am"
## [13] "wind_speed_3pm" "humidity_9am" "humidity_3pm" "pressure_9am"
## [17] "pressure_3pm" "cloud_9am" "cloud_3pm" "temp_9am"
## [21] "temp_3pm" "rain_today" "risk_mm" "rain_tomorrow"

By this stage of the project we will usually have identified a business problem that is the focus
of attention. In our case we will assume it is to build a predictive analytics model to predict the
chance of it raining tomorrow given the observation of today’s weather. In this case the variable
rain_tomorrow is the target variable. Given today’s observations of the weather this is what we
want to predict. The dataset we have is then a training dataset of historic observations. The
task is to identify any patterns among the other observed variables that suggest that it rains the
following day.

# Note the target variable.

target <- "rain_tomorrow"

# Place the target variable at the beginning of the vars.

vars <- c(target, vars) %>% unique() %T>% print()

## [1] "rain_tomorrow" "date" "location" "min_temp"
## [5] "max_temp" "rainfall" "evaporation" "sunshine"
## [9] "wind_gust_dir" "wind_gust_speed" "wind_dir_9am" "wind_dir_3pm"
## [13] "wind_speed_9am" "wind_speed_3pm" "humidity_9am" "humidity_3pm"
## [17] "pressure_9am" "pressure_3pm" "cloud_9am" "cloud_3pm"
## [21] "temp_9am" "temp_3pm" "rain_today" "risk_mm"
....

We have taken the opportunity here to move the target variable to be the first in the vector of
variables recorded in vars. This is common practice where the first variable in a dataset is the
target (dependent variable) and the remainder are the variables (the independent variables) that
will be used to build a model to predict that target.
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27 Risk Variable

With some knowledge of the data we observe risk_mm captures the amount of rain recorded 2018072320180723

tomorrow. We refer to this as a risk variable, being a measure of the impact or risk of the target
we are predicting (rain tomorrow). The risk is an output variable and should not be used as
an input to the modelling—it is not an independent variable. In other circumstances it might
actually be treated as the target variable.

# Note the risk variable - measures the severity of the outcome.

risk <- "risk_mm"

For this risk variable note that we expect it to have a value of 0 for all observations when the
target variable has the value No.

# Review the distribution of the risk variable for non-targets.

ds %>%
filter(rain_tomorrow == "No") %>%
select(risk_mm) %>%
summary()

## risk_mm
## Min. :0.00000
## 1st Qu.:0.00000
## Median :0.00000
## Mean :0.07397
## 3rd Qu.:0.00000
## Max. :1.00000

Interestingly, even a little rain (defined as 1mm or less) is regarded as no rain. That is useful to
keep in mind and is a discovery of the data that we might not have expected. As data scientists
we should be expecting to find the unexpected.

A similar analysis for the target observations is more in line with expectations.

# Review the distribution of the risk variable for targets.

ds %>%
filter(rain_tomorrow == "Yes") %>%
select(risk_mm) %>%
summary()

## risk_mm
## Min. : 1.10
## 1st Qu.: 2.40
## Median : 5.20
## Mean : 10.19
## 3rd Qu.: 11.60
## Max. :371.00
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28 ID Variables

From our observations so far we note that the variable (date) acts as an identifier as does the 2018072320180723

variable (location). Given a date and a location we have an observation of the remaining
variables. Thus we note that these two variables are so-called identifiers. Identifiers would not
usually be used as independent variables for building predictive analytics models.

# Note any identifiers.

id <- c("date", "location")

We might get a sense of how this works with the following which will list a random sample of
locations and how long the observations for that location have been collected.

ds[id] %>%
group_by(location) %>%
count() %>%
rename(days=n) %>%
mutate(years=round(days/365)) %>%
as.data.frame() %>%
sample_n(10)

## location days years
## 9 Cairns 3041 8
## 13 Dartmoor 3010 8
## 25 Newcastle 3041 8
## 32 Perth 3193 9
## 45 Watsonia 3010 8
....

The data for each location ranges in length from 4 years up to 9 years, though most have 8 years
of data.

ds[id] %>%
group_by(location) %>%
count() %>%
rename(days=n) %>%
mutate(years=round(days/365)) %>%
ungroup() %>%
select(years) %>%
summary()

## years
## Min. :4.000
## 1st Qu.:8.000
## Median :8.000
## Mean :7.918
## 3rd Qu.:8.000
## Max. :9.000
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29 Ignore IDs and Outputs

The identifiers and any risk variable (which is an output variable) should be ignored in any 2018072320180723

predictive modelling. Always watch out for treating output variables as inputs to modelling—
this is a surprisingly common trap for beginners. We will build a vector of the names of the
variables to ignore. Above we have already recorded the id variables and (optionally) the risk.
Here we join them together into a new vector using data.table::union() which performs a
set union operation—that is, it joins the two arguments together and removes any repeated
variables.

# Initialise ignored variables: identifiers and risk.

ignore <- union(id, risk) %T>% print()

## [1] "date" "location" "risk_mm"

We might also check for any variable that has a unique value for every observation. These are
often identifiers and if so they are candidates for ignoring. We select the vars from the dataset
and pipe through to base::sapply() for any variables having only unique values. In our case
there are no further candidate identifiers. as indicated by the empty result, character(0).

# Heuristic for candidate indentifiers to possibly ignore.

ds[vars] %>%
sapply(function(x) x %>% unique() %>% length()) %>%
equals(nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

ids

## character(0)

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, ids) %T>% print()

## [1] "date" "location" "risk_mm"
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30 Ignore Missing

We next remove any variable where all of the values are missing. There are none like this in 2018072320180723

the weather dataset but in general for other datasets with thousands of variables there may be
some. Here we first count the number of missing values for each variable and then list the names
of those variables that have no values.

# Identify variables with only missing values.

ds[vars] %>%
sapply(function(x) x %>% is.na %>% sum) %>%
equals(nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

missing

## character(0)

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, missing) %T>% print()

## [1] "date" "location" "risk_mm"

It is also useful to identify those variables which are very sparse—that have mostly missing values.
We can decide on a threshold of the proportion missing above which to ignore the variable as
not likely to add much value to our analysis. For example, we may want to ignore variables with
more than 70% of the values missing:

# Identify a threshold above which proportion missing is fatal.

missing.threshold <- 0.7

# Identify variables that are mostly missing.

ds[vars] %>%
sapply(function(x) x %>% is.na() %>% sum()) %>%
'>'(missing.threshold*nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

mostly

## character(0)

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, mostly) %T>% print()

## [1] "date" "location" "risk_mm"
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31 Ignore Excessive Level Variables

Another issue we traditionally come across in our datasets are those factors with very many 2018072320180723

levels. This is more common when we read data as factors rather than as character, and so this
step depends on where the data has come from. Nonetheless We might want to check for and
ignore such variables.

# Identify a threshold above which we have too many levels.

levels.threshold <- 20

# Identify variables that have too many levels.

ds[vars] %>%
sapply(is.factor) %>%
which() %>%
names() %>%
sapply(function(x) ds %>% extract2(x) %>% levels() %>% length()) %>%
'>='(levels.threshold) %>%
which() %>%
names() %T>%
print() ->

too.many

## character(0)

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, too.many) %T>% print()

## [1] "date" "location" "risk_mm"

Module: DataO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 31 of 50

Generated 8th September 2018 9:12pm



One Page R Data Science Data Wrangling

32 Ignore Constants

We also ignore variables with constant values as they add no extra information to the analy- 2018072320180723

sis.

# Identify variables that have a single value.

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->

constants

## character(0)

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, constants) %T>% print()

## [1] "date" "location" "risk_mm"
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33 Correlated Variables for Numerics

It is often useful to identify highly correlated variables. Such variables will often record the 2018072620180726

same information but in different ways and often arise when we combine data from different
sources.

We identify the numeric variables of a dataset by base::sapply()ing the function base::is.numeric()
to find base::which() are numeric. Their integer column positions are stored into the variable
numi.

# Note which variables are numeric.

vars %>%
setdiff(ignore) %>%
extract(ds, .) %>%
sapply(is.numeric) %>%
which() %>%
names() %T>%
print() ->

numc

## [1] "min_temp" "max_temp" "rainfall" "evaporation"
## [5] "sunshine" "wind_gust_speed" "wind_speed_9am" "wind_speed_3pm"
## [9] "humidity_9am" "humidity_3pm" "pressure_9am" "pressure_3pm"
## [13] "cloud_9am" "cloud_3pm" "temp_9am" "temp_3pm"
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34 Calculating Correlations

The correlation is calculated by dplyr::select()ing the numeric columns from the dataset and 2018072620180726

passing that through to stats::cor(). This matrix of pairwise correlations is based on only the
complete observations so that observations with missing values are ignored.

We set the upper triangle of the correlation matrix to NA’s as they are a mirror of the values in
the lower triangle and thus redundant. We also set diag=TRUE to set the diagonals as NA since
they will always be perfect correlations.

The processing continues by making all values positive using base::abs(). With conver-
sion to base::data.frame() then to dplyr::tbl_df() the dataset column names need to
be reset appropriately using magrittr::set_colnames(). We plyr::mutate() the dataset
with a new column using plyr::mutate(), reshape the dataset using tidyr::gather() from
tidyr and then omit missing correlations using data.table::na.omit(). Finally the rows are
plyr::arrange()’d with the highest absolute correlations appearing first.

# For the numeric variables generate a table of correlations

ds[numc] %>%
cor(use="complete.obs") %>%
ifelse(upper.tri(., diag=TRUE), NA, .) %>%
abs %>%
data.frame %>%
tbl_df %>%
set_colnames(numc) %>%
mutate(var1=numc) %>%
gather(var2, cor, -var1) %>%
na.omit %>%
arrange(-abs(cor)) %T>%
print() ->

mc

## # A tibble: 120 x 3
## var1 var2 cor
## <chr> <chr> <dbl>
## 1 temp_3pm max_temp 0.985
## 2 pressure_3pm pressure_9am 0.962
## 3 temp_9am min_temp 0.908
....
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35 Dealing with Correlations

From the final result we can identify pairs of variables where we might want to keep one but not 2018072620180726

the other variable because they are highly correlated. We will select them manually since it is
a judgement call. Normally we might limit the removals to those correlations that are 0.90 or
more. In our case here the three pairs of highly correlated variables make intuitive sense.

# Note the correlated variables that are redundant.

correlated <- c("temp_3pm", "pressure_3pm", "temp_9am")

# Add them to the variables to be ignored for modelling.

ignore <- union(ignore, correlated) %T>% print()

## [1] "date" "location" "risk_mm" "temp_3pm" "pressure_...
## [6] "temp_9am"
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36 Removing Ignored Variables

Once we have identified all of the variables to ignore we remove them from our list of variables 2018072620180726

to use.

# Check the number of variables currently.

length(vars)

## [1] 24

# Remove the variables to ignore.

vars <- setdiff(vars, ignore)

# Confirm they are now ignored.

length(vars)

## [1] 18
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37 Feature Selection

The FSelector package provides functions to identify subsets of variables that might be more 2018072620180726

effective for modelling. We can use this (and other packages) to assist us in reducing the variables
that will be useful in our modelling. As we find useful functionality we will add them to our
standard template so that for our next dataset we have the functionality readily available.

We first use FSelector::cfs() to identify a good subset of variables using correlation and en-
tropy. We then list the variable importance using FSelector::information.gain() to advise a
useful subset of variables. Note that the stringi::%s+% operator is a convenience to concatenate
strings together to produce a formula that indicates we will model the target variable using all
of the other variables of the dataset.

# Construct the formulation of the modelling we plan to do.

form <- formula(target %s+% " ~ .") %T>% print()

## rain_tomorrow ~ .

# Use correlation search to identify key variables.

cfs(form, ds[vars])

## [1] "rainfall" "sunshine" "humidity_3pm" "cloud_3pm" "rain_today"

# Use information gain to identify variable importance.

information.gain(form, ds[vars])

## attr_importance
## min_temp 0.005965086
## max_temp 0.013679399
## rainfall 0.058867687
## evaporation 0.005233566
## sunshine 0.055563157
## wind_gust_dir 0.006082875
## wind_gust_speed 0.027066589
## wind_dir_9am 0.008660761
## wind_dir_3pm 0.004830997
## wind_speed_9am 0.004388310
## wind_speed_3pm 0.005426372
## humidity_9am 0.037671301
## humidity_3pm 0.111123203
## pressure_9am 0.028254633
## cloud_9am 0.035295285
## cloud_3pm 0.051036499
## rain_today 0.047266724

The two measures are consistent in this case in that the variables identified by FSelector::cfs()
are the more important variables identified by FSelector::information.gain().
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38 Missing Targets

Sometimes there may be further operations to perform on the dataset prior to modelling. A 2018072620180726

common task is to deal with missing values. Here we remove observations with a missing target.
As with any missing data we should also analyse whether there is any pattern to the missing
targets. This may be indicative of a systemic data issue rather than simply randomly missing
values.

# Check the dimensions to start with.

dim(ds)

## [1] 145463 24

# Identify observations with a missing target.

missing.target <- ds %>% extract2(target) %>% is.na()

# Check how many are found.

sum(missing.target)

## [1] 3228

# Remove observations with a missing target.

ds %<>% filter(!missing.target)

# Confirm the filter delivered the expected dataset.

dim(ds)

## [1] 142235 24
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39 Missing Values

Missing values for the variables are an issue for some but not all algorithms. For exam- 2018072620180726

ple randomForest::randomForest() omits observations with missing values by default whilst
rpart::rpart() has a particularly well developed approach to dealing with missing values.

We may want to impute missing values in the data (though it is not always wise to do so). Here
we do this using randomForest::na.roughfix() from randomForest. This function provides, as
the name implies, a rather basic algorithm for imputing missing values. Because of this we will
demonstrate the process but then restore the original dataset—we will not want this imputation
to be included in our actual dataset.

# Backup the dataset so we can restore it as required.

ods <- ds

# Count the number of missing values.

ds[vars] %>% is.na() %>% sum()

## [1] 306730

# Impute missing values.

ds[vars] %<>% na.roughfix()

# Confirm that no missing values remain.

ds[vars] %>% is.na() %>% sum()

## [1] 0

As foreshadowed we now restore the dataset with its original contents.

# Restore the original dataset.

ds <- ods
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40 Omitting Observations

An alternative is to remove observations that have missing values. Here data.table::na.omit() 2018072620180726

identifies the rows to omit based on the vars to be included for modelling. The list of rows to omit
is stored as the na.action attribute of the returned object. We then remove these observations
from the dataset.

Notice we keep a copy of the original dataset and then restore it.

# Backup the dataset so we can restore it as required.

ods <- ds

# Initialise the list of observations to be removed.

omit <- NULL

# Review the current dataset.

ds[vars] %>% nrow()

## [1] 142235

ds[vars] %>% is.na() %>% sum()

## [1] 306730

# Identify any observations with missing values.

mo <- attr(na.omit(ds[vars]), "na.action")

# Record the observations to omit.

omit <- union(omit, mo)

# If there are observations to omit then remove them.

if (length(omit)) ds <- ds[-omit,]

# Confirm the observations have been removed.

ds[vars] %>% nrow()

## [1] 55650

ds[vars] %>% is.na() %>% sum()

## [1] 0

# Restore the original dataset.

ds <- ods
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41 Normalise Factors

Some variables will have levels with spaces, and mixture of cases, etc. We may like to normalise 2018072620180726

the levels for each of the categoric variables. For very large datasets this can take some time and
so we may want to be selective.

# Note which variables are categoric.

ds %>%
sapply(is.factor) %>%
which() ->

catc

# Normalise the levels of all categoric variables.

for (v in catc)
levels(ds[[v]]) %<>% normVarNames()
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42 Target as a Factor

We often build classification models. For such models we want to ensure the target is categoric. 2018072620180726

Often it is 0/1 and hence is loaded as numeric. We could tell our model algorithm of choice
to explicitly do classification or else set the target using base::as.factor() in the formula.
Nonetheless it is generally cleaner to do this here and note that this code has no effect if the
target is already categoric.

# Ensure the target is categoric.

ds[[target]] %<>% as.factor()

# Confirm the distribution.

ds[target] %>% table()

## .
## no yes
## 110985 31250

We can visualise the distribution of the target variable using ggplot2. The dataset is piped to
ggplot2::ggplot() whereby the target is associated through ggplot2::aes_string() (the aes-
thetics) with the x-axis of the plot. To this we add a graphics layer using ggplot2::geom_bar()
to produce the bar chart, with bars having width= 0.2 and a fill= color of "grey". The
resulting plot can be seen in Figure 1.

ds %>%
ggplot(aes_string(x=target)) +
geom_bar(width=0.2, fill="grey") +
theme(text=element_text(size=14))

0

30000

60000

90000

no yes
rain_tomorrow

co
un

t

Figure 1: Target variable distribution. Plotting the distribution is useful to gain an insight
into the number of observations in each category. As is the case here we often see a skewed
distribution.
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43 Identify Variable Types

Metadata is data about the data. We now record data about our dataset that we use later in 2018072620180726

further processing and analysing our data. In one sense the metadata is simply a convenient
store.

We identify the variables that will be used to build analytic models that provide different kinds
of insight into our data. Above we identified the variable roles such as the target, a risk variable
and the ignored variables. From an analytic modelling perspective we identify variables that are
the model inputs. We record then both as a vector of characters (the variable names) and a
vector of integers (the variable indicies).

inputs <- setdiff(vars, target) %T>% print()

## [1] "min_temp" "max_temp" "rainfall" "evaporation"
## [5] "sunshine" "wind_gust_dir" "wind_gust_speed" "wind_dir_9am"
## [9] "wind_dir_3pm" "wind_speed_9am" "wind_speed_3pm" "humidity_9am"
## [13] "humidity_3pm" "pressure_9am" "cloud_9am" "cloud_3pm"
## [17] "rain_today"

The integer indices are determined from the base::names() of the variables in the original
dataset. Note the use of USE.NAMES= from base::sapply() to turn off the inclusion of names
in the resulting vector to keep the result as a simple vector.

inputi <- sapply(inputs,
function(x) which(x == names(ds)),
USE.NAMES=FALSE)

inputi

## [1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 22

For convenience we record the number of observations:

nobs <- nrow(ds) %T>% print()

## [1] 142235

Here we simply report on the dimensions of various data subsets primarily to confirm the dataset
appear as we expect:

dim(ds)

## [1] 142235 24

dim(ds[vars])

## [1] 142235 18

dim(ds[inputs])

## [1] 142235 17
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44 Identify Numeric and Categoric Variables

Identifying numeric and categoric variables may be useful for example for cluster analysis algo- 2018072620180726

rithms that only deal with numeric variables. Here we identify them by name (a character string)
and by index. When using the index we have to assume the variables remain in the same order
within the dataset and all variables are present, otherwise the indicies will get out of sync.

# Identify the numeric variables by index.

ds %>%
sapply(is.numeric) %>%
which() %>%
intersect(inputi) %T>%
print() ->

numi

## [1] 3 4 5 6 7 9 12 13 14 15 16 18 19

# Identify the numeric variables by name.

ds %>%
names() %>%
extract(numi) %T>%
print() ->

numc

## [1] "min_temp" "max_temp" "rainfall" "evaporation"
## [5] "sunshine" "wind_gust_speed" "wind_speed_9am" "wind_speed_3pm"
## [9] "humidity_9am" "humidity_3pm" "pressure_9am" "cloud_9am"
## [13] "cloud_3pm"

# Identify the categoric variables by index and then name.

ds %>%
sapply(is.factor) %>%
which() %>%
intersect(inputi) %T>%
print() ->

cati

## [1] 8 10 11 22

ds %>%
names() %>%
extract(cati) %T>%
print() ->

catc

## [1] "wind_gust_dir" "wind_dir_9am" "wind_dir_3pm" "rain_today"
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45 Save the Dataset

For large datasets we may want to save it to a binary RData file once we have wrangled it into
the right shape and collected the metadata. Loading a binary dataset is generally quicker than
loading a CSV file—a CSV file with 2 million observations and 800 variables can take 30 minutes
to utils::read.csv(), 5 minutes to base::save(), and 30 seconds to base::load().

# Timestamp for the dataset.

dsdate <- "_" %s+% format(Sys.Date(), "%y%m%d") %T>% print()

## [1] "_180908"

# Filename for the saved dataset

dsrdata <- dsname %s+% dsdate %s+% ".RData" %T>% print()

## [1] "weather_180908.RData"

# Save relevant R objects to binary RData file.

save(ds, dsname, dspath, dsdate, nobs,
vars, target, risk, id, ignore, omit,
inputi, inputs, numi, numc, cati, catc,
file=dsrdata)

Notice that in addition to the dataset (ds) we also store the collection of metadata. This begins
with items such as the name of the dataset, the source file path, the date we obtained the dataset,
the number of observations, the variables of interest, the target variable, the name of the risk
variable (if any), the identifiers, the variables to ignore and observations to omit. We continue
with the indicies of the input variables and their names, the indicies of the numeric variables and
their names, and the indicies of the categoric variables and their names.

Each time we wish to use the dataset we can now simply base::load() it into R. The value that
is invisibly returned by base::load() is a vector naming the R objects loaded from the binary
RData file.

load(dsrdata) %>% print()

## [1] "ds" "dsname" "dspath" "dsdate" "nobs" "vars" "target" "risk"
## [9] "id" "ignore" "omit" "inputi" "inputs" "numi" "numc" "cati"
## [17] "catc"

We place the call to base::load() within a call to ( (i.e., we have surrounded the call with
round brackets) to ensure the result of the function call is printed. A call to base::load()
returns its result invisibly since we are primarily interested in its side-effect. The side-effect is
to read to R binary data from disk and to make it available within our current R session.

Module: DataO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 45 of 50

Generated 8th September 2018 9:12pm



One Page R Data Science Data Wrangling

46 A Template for Data Preparation

Through this chapter we have built a template for data preparation. An actual knitr template
based on this chapter for data preparation is available as http://HandsOnDataScience.com/
scripts/data.Rnw. An automatically derived version including just the R code is also available
as http://HandsOnDataScience.com/scripts/data.R. Notice that we would not necessarily
perform all of the steps, such as normalising the variable names, imputing missing values, omit-
ting observations with missing values, and so on. Instead we pick and choose as is appropriate
to our situation and specific datasets. Also, some data specific transformations are not included
in the template and there may be other transforms we need to perform that we have not covered
here. As we discover new tools to support the data scientist we can add them into our own
templates.
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47 Command Summary

This chapter has introduced, demonstrated and described the following R packages, functions,
commands, operators, and datasets:

get Function from base. Returns the named dataset.

glimpse Function from tibble. Summarise a dataset.

head Function from utils. Display the first few rows of a dataset.

names Function from base. Column names of a dataset.

normVarNames Function from rattle. Normalize variable names.

ncol Function from base. Number of columns in a dataset.

nrow Function from base. Number of rows in a dataset.

read_csv Function from readr. Load data from a CSV file.

sample_n Function from dplyr. Random sample of n rows.

sapply Function from base. Apply a function to columns of a dataset.

str_replace Function from stringr. Replace a string with another.

system.file Function from base. Locate a system file.

tail Function from utils. Display the last few rows of a dataset.
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48 Exercises

Exercise 1 Exploring the Weather

We have worked with the Australian weatherAUS dataset throughout this chapter. For this
exercise we will explore the dataset further. For each exercise, extend the knitr document with
the analyses performed.

1. Create a data preparation script beginning with the template available from http://
HandsOnDataScience.com/scripts/data.Rnw and replicating the data processing per-
formed in this chapter.

2. Investigate the dplyr::group_by() and plyr::summarise() functions, combined through
a pipeline using dplyr::%>% to identify regions with considerable variance in their weather
observations. The use of stats::var() might be a good starting point.

Exercise 2 Understanding Ferries

A dataset of ferry crossings on Sydney Harbour is available as http://HandsOnDataScience.
com/data/ferry.csv. The original source of the Ferry dataset is http://www.bts.nsw.gov.
au/Statistics/Ferry/default.aspx?FolderID=224. The dataset is available under a Creative
Commons Attribution (CC BY 3.0 AU) license. We will use this dataset to exercise our data
template.

1. Create a data preparation script beginning with the template available from http://
HandsOnDataScience/scripts/data.R.

2. Change the sample source dataset within the template to download the ferry dataset into
R.

3. Rename the variables to become normalized variable names.

4. Create two new variables from sub_route, called origin and destination.

5. Convert dates.

6. Convert appropriate variables into factors.

7. Work through the template to explore and prepare the dataset.

8. Develop some visualisations.
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49 Further Reading

The Rattle book (Williams, 2011), published by Springer, provides
a comprehensive introduction to data mining and analytics using
Rattle and R. It is available from Amazon. Rattle provides a graph-
ical user interface through which the user is able to load, explore,
visualise, and transform data, and to build, evaluate, and export
models. Through its Log tab it specifically aims to provide an R
template which can be exported and serve as the starting point for
further programming with data in R.

The Essentials of Data Science book (Williams, 2017), published
by CRC Press, provides a comprehensive introduction to data sci-
ence through programming with data using R. It is available from
Amazon. The book provides a template based approach to doing
data science and knowledge discovery. Templates are provided for
data wrangling and model building. These serve as generic starting
points for programming with data, and are designed to require min-
imal effort to get started. Visit https://essentials.togaware.
com for further guides and templates.
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