One Page R Data Science
Strings

Graham.Williams@togaware.com

29th July 2018

Visit https://essentials.togaware.com/onepagers for more Essentials.

Wrangling strings of characters is something we will find ourselves doing often as data scientists. 20180602
R provides a comprehensive set of tools for handling and processing strings. In this chapter we
review the functionality provided by R for managing and manipulating strings.

Through this guide new R commands will be introduced. The reader is encouraged to review the
command’s documentation and understand what the command does. Help is obtained using the
7 command as in:

?read.csv
Documentation on a particular package can be obtained using the help= option of 1ibrary():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively you are encouraged to run R (e.g.,
RStudio or Emacs with ESS mode) and to replicate the commands. Check that output is the
same and that you understand how it is generated. Try some variations. Explore.

Copyright © 2000-2018 Graham Williams. This work is licensed under @@@
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna- |@ |
tional License allowing this work to be copied, distributed, or adapted, with

attribution and provided under the same license.

https://essentials.togaware.com/onepagers
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

One Page R Data Science Strings

1 Packages Used

Packages used in this chapter include dplyr (Wickham et al., 2018), glue (Hester, 2017), magrittr ~ 20180720
(Bache and Wickham, 2014), stringr (Wickham, 2018), stringi (Gagolewski et al., 2018), scales
(Wickham, 2017), and rattle.data (Williams, 2017b).

Load required packages from local library into R sesstion.

library(dplyr) # Wrangling: mutate().

library(stringi) # The string concat operator /s+/.

library(stringr) # String manipulation.

library(glue) # Format strings.

library(magrittr) # Pipelines for data processing: J>% KT>) 5<>J.
library(rattle.data) # Weather dataset.

library(scales) # commas (), percent().

Module: StringsO Copyright © 2000-2018 Graham.WilliamsQ@Qtogaware.com Page: 1 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

2 Concatenate Strings

One of the most basic operations in string manipulation is the concatenate operation. R provides
alternatives for doing so but a modern favourite is the stringi: :%s+% operator.

"abc" %S"‘% "def" %S+% "ghi"
[1] "abcdefghi"
c("abc", "def", "ghi", "jkl") %S"‘% C("IIlIlO")

[1] "abcmno" "defmno" "ghimno" "

jklmno"

c("abc", "def", "ghi", "jk1") Y%s+} c("mno", "pgr")

[1] "abcmno" "defpqr" "ghimno" "jklpqr"

c("abc", "def", "ghi", "jk1") Y%s+% c("mno", "pgr", "stu", "vwx"

[1] "abcmno" "defpgr" "ghistu" "jklvwx"

The tidy function for concatenating strings is stringr::str_c(). A sep= can be used to specify
a separator for the concatenated strings.

str_c("hello", "world")
[1] "helloworld"
str_c("hello", "world", sep=" ")

[1] "hello world"
We can also concatenate strings using glue: :glue().

glue("hello", "world")
helloworld

The traditional base: : cat () function returns the concatenation of the supplied strings. Numeric
and other complex objects are converted into character strings.

cat("hello", "world")
hello world
cat ("hello", 123, "world")

hello 123 world

Yet another alternative (and there are many) is the function base: :paste(). Notice that it
separates the concatenated strings with a space.

paste("hello", "world")
[1] "hello world"

Module: StringsO Copyright © 2000-2018 Graham.WilliamsQ@Qtogaware.com Page: 2 of 20

Generated 29th July 2018 6:33pm

20180720

One Page R Data Science Strings

3 Concatenate Strings Special Cases

Each operator/functions treats NULL differently. Note the convenience for cat() toadd 20180720
a space between the strings, and that paste() treats NULL as a zero length string, and
thus there are two spaces between the words concatenated.

"hello" Ys+J NULL %s+% "world"
character(0)

str_c("hello", NULL, "world")
[1] "helloworld"
glue("hello", NULL, "world")

cat("hello", NULL, "world")
hello world
paste("hello", NULL, "world")

[1] "hello world"
NA tends to be treated differently too.

"hello" Ys+/ NA %s+} "world"
[1] NA

str_c("hello", NA, "world")
[1] NA

glue("hello", NA, "world")
helloNAworld

cat("hello", NA, "world")

hello NA world
paste("hello", NA, "world")
[1] "hello NA world"

The examples becomes more interesting in the context that the arguments to the functions might

be string returning functions. If that function returns NULL or NA, purposely or accidentally
then it is useful to know the consequences.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 3 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

4 String Length

The tidy way to get the length of a string is stringr: :str_length(). 20180606

str_length("hello world")

[1] 11

str_length(c("hello", "world"))
[1]1 5 5

str_length (NULL)

integer (0)

str_length(NA)

[1] NA

The function base: :nchar () is the traditional approach.

nchar ("hello world")

[1] 11

nchar (c("hello", "world"))
[1] 56 5

nchar (NULL)

integer(0)

nchar (NA)

[1] NA

Module: StringsO Copyright © 2000-2018 Graham.WilliamsQ@Qtogaware.com Page: 4 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

5 Case Conversion

Often during data transformations strings have to be converted from one case to the other. 20180606
These simple transformations can be achieved by base: :tolower () and base: :toupper (). The
base: :casefold() function can also be used as a wrapper to the two functions.

toupper ("String Manipulation")

[1] "STRING MANIPULATION"

tolower ("String Manipulation")

[1] "string manipulation"
casefold("String Manipulation")

[1] "string manipulation"
casefold("String Manipulation", upper=TRUE)
[1] "STRING MANIPULATION"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 5 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

6 Tidy Sub-String Operations

We will find ourselves often wanting to extract or modify sub-strings within a string. The tidy
way to do this is with the stringr: :str_sub() function. We can specify the start= and the
end= of the string. The indices of the string start from 1.

s <- "string manipulation"
str_sub(s, start=3, end=6)

[1] "ring"
str_sub(s, 3, 6)

[1] "ring"

A negative is used to count from the end of the string.

str_sub(s, 1, -8)

[1] "string manip"

Replacing a sub-string with another string is straightforward using the assignment operator.

str_sub(s, 1, -8) <- "stip"
s

[1] "stipulation"
The function also operates over a vector of strings.

v <- c("string", "manipulation", "always", "fascinating")
str_sub(v, -4, -1)
[1] "ring" "tion" "Ways" "ting"

str_sub(v, -4, -1) <- "RING"

v
[1] "stRING" "manipulaRING" "alRING" "fascinaRING"
Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 6 of 20

Generated 29th July 2018 6:33pm

20180607

One Page R Data Science Strings

7 Base Sub-String Operations

The base function base: :substr() can be used to extract and replace parts of a string similar
to stringr::str_sub(). Note however that it does not handle negative values and that string
replacement only replaces the same length as the replacement string, without changing the length
of the original string.

s <- "string manipulation"
substr(s, start=3, stop=6)

[1] "ring"
substr(s, 3, 6)
[1] "ring"

substr(s, 1, 12) <- "stip"
s

[1] "stipng manipulation"

The base: :substring () function performs similarly though uses 1ast=rather than stop=.

s <- "string manipulation"
substring(s, first=3, last=6)
[1] "ring"

x <- c("abcd", "aabcb", "babcc", "cabcd")
substring(x, 2, 4)

[1] "becd" "abce" "abc" "abc"

substring(x, 2, 4) <- "AB"
x

[1] "aABd" "aABcb" "bABcc" "cABcd"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 7 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

8 Trim and Pad

One of the major challenges of string parsing is removing and adding whitespaces and wrapping
text.

Additional white space can be present on the left, right or both sides of the word. The
stringr::str_trim() function offers an effective way to get rid of these whitespaces.

ws <- c(" abc", "def ", " ghi ")
str_trim(ws)

[1] "abc" "def" "ghi"
str_trim(ws, side="left")

[1] "abc" "def " "ghi "
str_trim(ws, side="right")

[1] " abc" "def" " ghi"
str_trim(ws, side="both")

[1] "abc" "def" "ghi"

Conversely we can also pad a string with additional characters for up to a specified width using
stringr::str_pad(). The default padding character is a space but we can override that.

str_pad("abc", width=7)

[1] abc"

str_pad("abc", width=7, side="left")

[1] " abc"

str_pad("abc", width=7, side="right")

[1] "abc "

str_pad("abc", width=7, side="both", pad="#")
[1] "##abcH#"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 8 of 20

Generated 29th July 2018 6:33pm

20180608

One Page R Data Science Strings

9 Wrapping and Words

Formatting a text string into a neat paragraph of defined maximum width is another operation
we often find ourselves wanting. The stringr::str_wrap() function will do this for us.

st <- "All the Worlds a stage, All men are merely players"
cat (str_wrap(st, width=25))

All the Worlds a stage,
All men are merely
players

Words of course form the basis for wrapping a sentence. We may wish to extract words from
a sentence ourselves for further processing. Here we us stringr: :word() to do so.We specify
the positions of the word to be extracted from the setence. The default separator value is
space.

st <- c("The quick brown fox", "jumps on the brown dog")
word(st, start=1, end=2)

[1] "The quick" "jumps on"
word(st, start=1, end=-2)

[1] "The quick brown" "jumps on the brown"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 9 of 20

Generated 29th July 2018 6:33pm

20180608

One Page R Data Science Strings

10 Glue Strings Together

The glue package provides a mechanism for building output strings from a collection of strings 20180729
and variables. The basic use of glue: : glue () will concatenate its string arguments with variable
substitution identified using curly braces. In this exmaple we use the rattle.data: :weatherAUS

and format large numbers using scales: :comma().

dsname <- "weatherAUS"

nobs <- nrow(weatherAUS)

starts <- min(weatherAUS$Date)

glue("The {dsname} dataset",
" has just less than {comma(nobs + 1)} observations,",
" starting from {format(starts, '%-d %B %Y')}.")

The weatherAUS dataset has just less than 145,461 observations, starting f...

We can manually wrap the sentence.

glue("
The {dsname} dataset has just
less than {comma(nobs + 1)} observations
starting from {format(starts, '%-d %B %Y')}.
II)

The weatherAUS dataset has just
less than 145,461 observations
starting from 1 November 2007.

Notice how the initial and last empty lines are handled “as expected”, and the line split is
maintained.

Named arguments within the function call can be used to assign values to variables that only
exist in the scope of the function call.

glue("
The {dsname} dataset has just
less than {comma(nobs + 1)} observations
starting from {format(starts, '%-d %B %Y')}.

n
>

dsname = "weather",
nobs = nrow(weather),
starts = min(weather$Date))

The weather dataset has just
less than 367 observations
starting from 1 November 2007.

We can also see the effect of indenting lines in this example, where the indentation is re-
tained.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 10 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science

Strings

11 Pipeline Glue

We can use glue: :glue_data() within pipes and operate over the rows of the data that is piped

into the operator.

weatherAUS %>%

##
##
#it
##
##
##

sample_n(6) %>%
glue_data("Observation",

" {rownames(.) %>}, as.integer() %>% comma() %>}, sprintf('%7s', .)}",
" location {Location %>% sprintf('%-14s', .)}",
" max temp {MaxTemp %>% sprintf('%5.1f', .)}")

Observation 133,068 location Launceston max temp 23.8

Observation 136,307 location AliceSprings max temp 23.2

Observation 41,622 location Williamtown max temp 23.2

Observation 120,795 location Perth max temp 24.2

Observation 93,346 location Townsville max temp 29.6

Observation 75,506 location Portland max temp 14.3

It can also be useful with the tidy verse work flow.

weatherAUS %>%

##
##
#it
#it
##
##

sample_n(6) %>%
mutate (TempRange = glue("{MinTemp}-{MaxTemp}")) %>%
glue_data("Observed temperature range at {Location} of

Observed temperature range
Observed temperature range
Observed temperature range
Observed temperature range
Observed temperature range
Observed temperature range

at
at
at
at
at
at

Woomera of 6.5-17.
NorahHead of 17.7-
Townsville of 19.8-26.7

6
26.3

Nuriootpa of 9.8-33.1
MelbourneAirport of 15.3-26.6
Nuriootpa of 3.6-22.1

{TempRangel}")

Module: StringsO

Copyright © 2000-2018 Graham.Williams@togaware.com

Generated 29th July 2018 6:33pm

Page: 11 of 20

20180729

One Page R Data Science Strings

12 Pattern Matching with Regular Expressions

One of the most powerful string processing concepts is the concept of regular expressions. A
regular expression is a sequence of characters that describe a pattern. The concept was formalized
by American mathematician Stephen Cole Kleene. A regular expression pattern can contain a
combination of alphanumeric and special characters. It is a complex topic and we take an
introductory look at it here to craft regular expressions in R.

An important concept is that of metacharacters which have special meaning within a regular
expression. Unlike other characters that are used to match themselves, metacharacters have
a specific meaning The following table shows a list of metacharacters used in regular expres-
sions.

Metacharacter Description

- Matches at the start of the string

$ Matches at the end of the string

O Define a subexpression to be matched and retrieved later.
|

[

Matches the pattern before or pattern after
] Matches a single character that is contained within bracket
Matches any single character

SOk W N

Such metacharacters are used to match different patterns.

s <- c("hands", "data", "on", "data$cience", "handsondata$cience", "handson")
grep(pattern=""data", s, value=TRUE)

[1] "data" "data$cience"
grep(pattern="on$", s, value=TRUE)

[1] "on" "handson"
grep(pattern="(nd)..(nd)", s, value=TRUE)

[1] "handsondata$cience"
In order to match a metacharacter in R we need to escap it with \\ (double backslash).

grep(pattern="\\$", s, value=TRUE)

[1] "data$cience" "handsondata$cience"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 12 of 20

20180608

One Page R Data Science Strings

13 Regular Expressions: Quantifiers

Quantifiers are used to match repitition of a pattern within a string. The following table shows
a list of quantifiers.

Quantifier Description

1 * The preceeding item is matched 0 or more times
2 + The preceeding item is matched 1 or more times
3 7 The preceeding item is matched at most 1 times.
4 {n} The preceeding item is matched n times.

5 {n,} The preceeding item is matched atleast n times.

Some examples will illustrate.

s <- c("aaab", llabbll’ llbcll, "abbcd", "bbbC", "abab", "C&a")
grep(pattern="ab*b", s, value=TRUE)

[1] "aaab" "abb" "abbcd" "abab"
grep(pattern="abbc?", s, value=TRUE)
[1] "abb" "abbcd"
grep(pattern="b{2,}?", s, value=TRUE)
[1] "abb" "abbcd" "bbbc"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 13 of 20

Generated 29th July 2018 6:33pm

20180608

One Page R Data Science Strings

14 Regular Expressions: Character Classes

A character class is a collection of characters that are in some way grouped together. We enclose
the characters to be grouped within square backets []. The pattern then matches any one of the
characters in the set. For example, the character class [0-9] matches any of the digits from 0 to
9.

Character Class Description
1 [0-9] Digits
2 Ja-z] Lower-case letters
3 [A-Z] Upper-case letters
4 [a-zA-Z] Alphabetic characters
5 [ta-zA-Z] Non-alphabetic characters
6 [a-zA-Z0-9] Alphanumeric characters
7 [\n\t\r\f\v] Space characters
8 [L5\) Q-8+ 7~ {|(\\#%&"_/<=>’] Punctuation characters

s <- c("abc12", ||@#$n’ n345||, "ABCd")
grep(pattern="[0-9]+", s, value=TRUE)

[1] "abcl2" "345"
grep(pattern="[A-Z]+", s, value=TRUE)
[1] "ABcd"

grep(pattern="["0#$]+", s, value=TRUE)

[1] "abcl2" "345" "ABcd"
R also supports the use of POSIX character classes which are represented within [[]] (double
braces).

grep(pattern="[[:alpha:]]", s, value=TRUE)
[1] "abc12" "ABcd"
grep(pattern="[[:upper:]1]", s, value=TRUE)
[1] "ABcd"

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 14 of 20

Generated 29th July 2018 6:33pm

20180608

One Page R Data Science Strings

15 Generate Strings for Testing

It is sometimes very useful to be able to test out some code using some test data. A simple way 20180604
to generate test strings us with stringi::stri_rand_lipsum().

stri_rand_lipsum(20)

[1] "Lorem ipsum dolor sit amet, posuere at in in id ligula sodales eget

[2] "Sapien augue dignissim, vulputate, montes ipsum rutrum eu eu porta f...
[3] "Ultrices ante in commodo eu id elementum velit ut bibendum. Nisl, la...
[4] "Dis aptent senectus rhoncus et sed donec, vitae posuere, neque. Arcu...
[5] "Vestibulum molestie in donec tincidunt, eu sapien. Quam in curae cla...
[6] "Leo, ac integer sed penatibus. Curabitur, neque habitant quam, dui c...
[7] "Vulputate elementum in urna. Ut nunc sed, imperdiet. Suscipit eu int...
[8] "Senectus justo. Lobortis mauris praesent taciti. Massa ultrices in v...
[9] "Nec at sapien phasellus nec eros quis ligula ac vestibulum, eu lorem...
[10] "Sit, vestibulum est, velit ultrices nisi porta aliquam non in. Monte...
[11] "Risus, sit metus augue non. Quisque sed amet, ac libero tempus sed n...
[12] "Sed porttitor, eu amet ex amet nibh mauris, venenatis sed nec. Netus...
[13] "Tellus himenaeos at convallis tincidunt sit. Metus sit mauris mus si...
[14] "Massa in in potenti tellus rutrum orci donec fames. Ut elit in moles...
[15] "In ac fermentum amet mus. In ridiculus augue elit fermentum, ornare....
[16] "Sed ultricies vel consequat aliquet magnis nisl tortor. Nisl eu, gra...
[17] "Scelerisque sagittis consequat tempor iaculis sociis commodo. Hac ma...
[18] "Non a interdum per malesuada enim potenti cum. Auctor ut purus egest...
[19] "Interdum vel ut eros. Sed, dictumst laoreet curabitur nec, cursus ar...
[20] "Leo sed ut at lacinia lacus enim felis in ultrices. Imperdiet feugia...

stri_rand_lipsum(2)

[1] "Lorem ipsum dolor sit amet, sem, aliquam duis arcu. Nam magna, non ve...
[2] "Sed, ac hac primis aenean. Fames neque maecenas sed ligula velit. Eu ...

sapply(stri_rand_lipsum(10), nchar, USE.NAMES=FALSE)
[1] 514 527 617 740 653 630 690 680 789 417
sapply(stri_rand_lipsum(10), nchar, USE.NAMES=FALSE)
[1] 502 473 615 360 813 761 629 547 290 301

The strings generated are of different lengths and each call generates different strings.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 15 of 20

Generated 29th July 2018 6:33pm

One Page R Data Science Strings

16 Read a File as Vector of Strings

There may be occasions where we would like to load a dataset from a file as strings, one line as
a string, returning a vector of strings. We can achieve using the function base: :readLines().
IN the following example we access the system file weather.csv that is provided by the rattle
(?) package.

dsname <- "weather" # Dataset name.

ftype <- "csv" # Source dataset file type.
dsname Ys+%
n . n %S+%

ftype %T>%
print () %>%
system.file(ftype, ., package="rattle") %>%
readLines() —>
ds

[1] "weather.csv"
A sample of the data.

head (ds)

[1] "\"Date\",\"Location\",\"MinTemp\",\"MaxTemp\",\"Rainfall\",\"Evaporat. ..
[2] "2007-11-01,\"Canberra\",8,24.3,0,3.4,6.3,\"NW\",30,\"Sw\",\"NW\",6,20...
[3] "2007-11-02,\"Canberra\",14,26.9,3.6,4.4,9.7,\"ENE\",39,\"E\",\"W\",4, ...
[4] "2007-11-03,\"Canberra\",13.7,23.4,3.6,5.8,3.3,\"NW\",85,\"N\",\"NNE\". ..
[5] "2007-11-04,\"Canberra\",13.3,15.5,39.8,7.2,9.1,\"NW\",54, \"WNW\",\"W\. ..
[6] "2007-11-05,\"Canberra\",7.6,16.1,2.8,5.6,10.6,\"SSE\",50,\"SSE\",\"ES. ..

Find those strings that contain a specific pattern using base: :grep().

grep("ENE", ds)

[1] 3 10 23 26 28 36 37 42 43 49 50 54 68 69 71 76 86 91
[19] 97 101 103 106 108 109 110 118 129 132 133 135 138 145 160 171 176 215
[37] 222 278 303 304 310 323 341 348 351 357 365

grep("ENE", ds, value=TRUE)

[1] "2007-11-02,\"Canberra\",14,26.9,3.6,4.4,9.7,\"ENE\",39,\"E\",\"W\",4. ..
[2] "2007-11-09,\"Canberra\",8.8,19.5,0,4,4.1,\"S\",48,\"E\",\"ENE\",19,1. ..

[3] "2007-11-22,\"Canberra\",16.4,19.4,0.4,9.2,0,\"E\",26,\"ENE\",\"E\",6. ..
[4] "2007-11-25,\"Canberra\",15.4,28.4,0,4.4,8.1,\"ENE\",33,\"SSE\",\"NE\. ..
[5] "2007-11-27,\"Canberra\",13.3,22.2,0.2,6.6,2.3,\"ENE\",39,\"E\",\"E\". ..
[6] "2007-12-05,\"Canberra\",14.5,21.8,0,8.4,9.8,\"ENE\",43,\"ESE\",\"E\". ..
Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 16 of 20

Generated 29th July 2018 6:33pm

20180604

One Page R Data Science Strings

17 Command Summary

This chapter has introduced, demonstrated and described the following R packages, functions,
commands, operators, and datasets:

(Currently incomplete. J

%s+% Operator from stringi. Concatenate strings with no separator between the strings.

cat () Function from base. Concatenate strings with a space separator between the strings by
default. Add sep= to specify a different or no separator.

gregexpr () Function from base. Returns all matches of pattern in string.

grep() Function from base. Returns index of elements that matched.

grepl () Function from base. Returns boolean values indicating if a pattern exist in the string.
gsub() Function from base. Replaces all matches of pattern with replacement.

paste() Function from base. Concatenate strings by pasting them together.

regexec() Function from base. Combines results of regexpr() and gregexpr().

regexpr() Function from base. Returns the first match of the pattern in string.

str_c() Function from stringr. Tidy version of concatenate strings.

strsplit () Function from data.table. Split string in to vector according to pattern match.
str_detect () Function from stringr. Detect a presence or absence of a pattern in a string.
str_extract () Function from stringr. Extracts first occurance of pattern in string..
str_extract_all() Function from stringr. Extracts all occurance of pattern in string..
str_match() Function from stringr. Extract first matched group from a string.
str_match_all() Function from stringr. Extract all matched groups from a string.

str_locate() Function from stringr. Locate the position of the frst occurence of a pattern in a
string.

str_locate_all() Function from stringr. Locate the position of all occurences of a pattern in
a string.

str_replace() Function from stringr. Returns the first match of the pattern in string.
str_replace_all() Function from stringr. Returns all matches of pattern in string.
str_split () Function from stringr. Split up a string into a variable number of pieces.
str_split_fixed() Function from stringr. Split up a string into a fixed number of pieces.

sub() Function from base. Replaces the first match of pattern with replacement.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 17 of 20

One Page R Data Science Strings

18 Further Reading and Acknowledgements

The Rattle book (Williams, 2011), published by Springer, provides
a comprehensive introduction to data mining and analytics using
Rattle and R. It is available from Amazon. Rattle provides a graph-
ical user interface through which the user is able to load, explore,

visualise, and transform data, and to build, evaluate, and export e
models. Through its Log tab it specifically aims to provide an R

template which can be exported and serve as the starting point for

further programming with data in R.

Graham Williams

&) Springer

he 8 Serles The Essentials of Data Science book (Williams, 2017a), published
;':::Zif::zs o8 by CRC Press, provides a comprehensive introduction to data sci-
Keowiede Discoery Using R ence through programming with data using R. It is available from
e ’%ééééé%“é Amazon. The book provides a template based approach to doing

ew (] data science and knowledge discovery. Templates are provided for

— A data wrangling and model building. These serve as generic starting

il L points for programming with data, and are designed to require min-

am J. Wil

imal effort to get started. Visit https://essentials.togaware.
com for further guides and templates.

Other resources include:

o Handling and Processing Strings in R, a freely available ebook by Gaston Sanchez from
2013.

e http://www.rexamine.com/2013/04/properly-internationalized-regular-expressions-in-r/

Some of the material has been updated from material collected by Karthik Bharadwaj.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 18 of 20

https://bit.ly/rattle_data_mining
https://bit.ly/essentials_data_science
https://bit.ly/rattle_data_mining
https://bit.ly/rattle_data_mining
https://essentials.togaware.com
https://essentials.togaware.com
http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
http://www.rexamine.com/2013/04/properly-internationalized-regular-expressions-in-r/

One Page R Data Science Strings

19 References

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.5, URL https://CRAN.R-project.org/package=magrittr.

Gagolewski M, Tartanus B, , other contributors; IBM, other contributors; Unicode, Inc (2018).
stringi: Character String Processing Facilities. R package version 1.2.3, URL https://CRAN.
R-project.org/package=stringi.

Hester J (2017). glue: Interpreted String Literals. R package version 1.2.0, URL https:
//CRAN.R-project.org/package=glue.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Wickham H (2017). scales: Scale Functions for Visualization. R package version 0.5.0, URL
https://CRAN.R-project.org/package=scales.

Wickham H (2018). stringr: Simple, Consistent Wrappers for Common String Operations. R
package version 1.3.1, URL https://CRAN.R-project.org/package=stringr.

Wickham H, Frangois R, Henry L, Miiller K (2018). dplyr: A Grammar of Data Manipulation.
R package version 0.7.6, URL https://CRAN.R-project.org/package=dplyr.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R Journal, 1(2), 45-55. URL
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowledge
discovery. Use R! Springer, New York.

Williams GJ (2017a). The Essentials of Data Science: Knowledge discovery using R. The R
Series. CRC Press.

Williams GJ (2017b). rattle.data: Rattle Datasets. R package version 1.0.2, URL https:
//CRAN.R-project.org/package=rattle.data.

This document, sourced from StringsO.Rnw bitbucket revision 276, was processed by KnitR ver-
ston 1.20 of 2018-02-20 10:11:46 UTC and took 7.4 seconds to process. It was generated by gjw
on Ubuntu 18.04 LTS.

Module: StringsO Copyright © 2000-2018 Graham.Williams@togaware.com Page: 19 of 20

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=glue
https://www.R-project.org/
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=dplyr
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
https://CRAN.R-project.org/package=rattle.data
https://CRAN.R-project.org/package=rattle.data

Generated 29th July 2018 6:33pm

	Packages Used
	Concatenate Strings
	Concatenate Strings Special Cases
	String Length
	Case Conversion
	Tidy Sub-String Operations
	Base Sub-String Operations
	Trim and Pad
	Wrapping and Words
	Glue Strings Together
	Pipeline Glue
	Pattern Matching with Regular Expressions
	Regular Expressions: Quantifiers
	Regular Expressions: Character Classes
	Generate Strings for Testing
	Read a File as Vector of Strings
	Command Summary
	Further Reading and Acknowledgements
	References

